Design of Communication Interface and Control System for Intelligent Humanoid Robot

HSIUNG-CHENG LIN,1 CHAO HUNG CHEN,2 GUO-SHING HUANG,1 YING-CHU LIU,3 WEI-CHUNG HSU3

1Department of Electronic Engineering, National Chin-Yi University of Technology, Taiping, Taichung, Taiwan
2Department of Electrical Engineering, Chienkuo Technology University, Changhua, Taiwan
3Department of Automation Engineering, Chienkuo Technology University, Changhua, Taiwan

Received 8 September 2009; accepted 31 December 2009

ABSTRACT: Currently, robot applications have been fast expanding to many areas such as entertainment, home task, security, medical care, etc. With an increasing robot demand, the development of highly reliable and low-cost robot control system has become a hot research field in recent years. However, most robot control system requires special interface design or suffers from complexity or high cost. This phenomenon poses a great difficulty for students to learn such a robot development knowledge from a traditional classroom. Accordingly, this paper aims to propose a simple but reliable robot communication interface and local-loop control system based on RS232 and 8051 microprocessor, suitable use as lecture material for various kinds of robot control. In this proposed scheme, the robot action commands stored in the database using C++ Builder can be transmitted from the command-transmission microprocessor (CTM) and then received by the individual authorized action-processing microprocessor (APM) via RS232. Every APM is responsible to its respective robot’s joint so that there are up to tens of modules to be operated for a variety of robot actions simultaneously and independently. Real-time implementation results are presented to demonstrate the effectiveness of the proposed approach in terms of robust, simple, flexible, and efficient performance. © 2010 Wiley Periodicals, Inc. Comput Appl Eng Educ 17: 1–14, 2010; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20413

Keywords: local closed-loop; robot action control; RS232; PWM; motor driver

INTRODUCTION

Due to the prospective global robot market, some big enterprises around the world have started to get into the robot field and opened related projects. One of the most well-known cases is that Microsoft has announced the robot development platform, for example, Microsoft Robotics Studio 2006, Microsoft Robotics Developer Studio 2008, the second-generation robot SPC-101C, etc. With the robot development trend, the research in the robot communication interface and control system is increasing significantly in recent years [1–35]. Although in nowadays the robot development is much faster than before, most of robot control systems and interfaces relied on the special platform such as Microsoft products, or special robot languages such as ACT-R cognitive-modeling language, Extensible Markup Language (XML), or special controllers such as SAMSUNG ARM S3C2410, etc. [5, 7, 25]. These tools may cause a barrier for students to apply their school-based learning knowledge to robot system directly. From the view of teaching, it is thus indispensable to establish a helpful example for robot system studying, particularly in communication interface and control system.

This study proposes a communication interface and local-loop control system for Intelligent Humanoid Robot with open architecture based on a RS232 and the microprocessor, that is, Intel 8051 [36–38]. Every robot action can be carried out using the predefined commands combining with independent hardware modules. Hence, a variety of robot actions can be achieved simultaneously and rapidly. This paper is organized as follows. The second section introduces a profile of the proposed system architecture, focusing on the hardware system. In the third section, the software system based on C++ Builder database is introduced. The fourth section presents the real-time...
experimental results with both basic and advanced robot actions. Conclusions and recommendations for further applications are given in the fifth section.

ARCHITECTURE OF SYSTEM

Figure 1 depicts the profile of general interface communication methods [1–14]. The Intelligence Computer is assumed as the core processing center, and the other peripheral facilities or signal sources can communicate with it via different interfaces. For instance, PDA uses a wireless communication for data transferring and receiving information from the Intelligence Computer. Also, RS232 is used as a bridge between the Intelligence Computer and Sound, Robot’s Head, Power System, etc. Based on Figure 1, the Action Computer that receives the commands from the Intelligence Computer is responsible for performing the robot actions.

The objective of this study is to construct a communication interface via RS232 and develop a local-loop control system. The block of the proposed scheme is shown in Figure 2. Once the computer receives external signals, it will soon access the database to obtain the responsible commands that are then transmitted to the command-transmission microprocessor (CTM), where the database is built up using C++ Builder. The action-processing microprocessor (APM) receiving the commands from the CTM is designed to control the robot actions by the proposed Motor Control System with DC motor.

The sketch of Humanoid Robot in this study is shown in Figure 3, where M1–M24 is the robot’s joint controlling motor. The proposed hardware architecture is shown in Figure 4. When external signals such as image, sound, ultrasonic, temperature, photoelectric, or other facilities are received by PC, the responsible action commands can be therefore determined and transmitted to the CTMs, that is, 8051(A), 8051(B), 8051(C), 8051(D), via COM1, COM2, COM3, and COM4, respectively. The commands in the CTM, for example, 8051(A), can be identified by each APM (89C2051(1)–89C2051(12)). The robot action is controlled by its responsible APM so that there are up to 48 local-loop robot action control modules that can be activated simultaneously and independently.

For easy demonstration, Figure 5 only illustrates the hardware module in the case of 8051(A)-linked system. Note that the other modules keep the same structure as Figure 5. The main facilities for implementing the proposed system are
concluded in Table 1. The command obtained from the database is first sent to the port 1 of 8051(A), and it is then read by the APM (89C2051(1)–89C2051(12)). Once any APM confirms its recognized command, the respective motor control system will be soon operated via its output of port 3. Also, the robot joint movement status is detected by the position-limited circuit, and its feedback signal will be received by the APM for necessary processing like stop or brake.

The port 1 bits in the APM is designated to receive the command from the CTM. Its highest four bits \((0100****...1111****)\) represent the specific motor driving operation with pulse width modulation (PWM), for details listed in Table 2. On the other hand, the motor ID (joint identification) is defined using the lowest four bits \((****0000...****1111)\). Additionally, two bits from the port 3 are used to generate control signals for the two-input motor driver (TA 7257P) to control the DC motor, shown in Table 3. Figure 6 depicts 4-speed PWM signals.

SYSTEM SOFTWARE

Database Access and Transmission Processing

The flowchart of the database access and transmission is shown in Figure 7. Firstly, the action command is read and checked if it is predefined in advance. Once the command is confirmed, a sequence data stored in the database will be transmitted to the CTM. Note that the sequence data are composed as the action command according to the definition in Table 2. More detailed discussion is presented in the Experimental Results Section.

Figure 8 shows the further detailed procedure for the data transmission from PC to the CTM. Initially, set up the Relational Database System using C++ Builder, that is, MySQL database. The TXD and RXD of the serial port, for example, COM1, are employed to transmit data. The data ready for transmission are hold in the Transmission Holding Register (THR) temporarily until it has been transmitted completely. Note that the Bps (Baud rate per second), for example, 9,600, must match the 8,051 receiving rate. The checking code, that is, 10H, is sent out prior to the data transmission. This procedure guarantees that the command can be received by the CTM without data loss.

The main programming procedure is briefly described as follows:

(a) Set up MySQL database connection.
(b) Read the command (a sequence data) from the database. Some examples of command codes are given in Table 4.
(c) Transmit the checking number (10H) to the CTM.
(d) Delay 0.01 s.
(e) Transmit the data to the CTM.
(f) Delay 0.01 s.
(g) Go back to step (b) until the transmission is complete.

Action Command Receiving

The CTM is to receive the action commands from PC database, and it must coordinate with the PC data transmission as above. Its programming flowchart is shown in Figure 9. The main procedure is briefly described as follows:

(a) Set COM1 as the serial communication. SCON is set to as transmission mode 1, and TMOD is set as timer mode 2, set as Table 5.
(b) Read the data and check if it is 10H, received from the PC and regarded as a checking code. If yes, delay 0.1 s, read the command, and forward it to the port 1 of CTM. Otherwise, continue next step.
(c) Delay 0.01 s.
(d) Go back to step (b) until the system stop is requested.

Action Command Processing

A case study is given to demonstrate the action command processing, where the motor ID number is assumed as 0001,
that is, $p_1 = \text{abcd0001}$, and “abcd” is an arbitrary binary code. Once the APM has read the command from the CTM and confirmed the ID number, the motor control program in the APM starts to operate the responsible motor, as shown in Figure 10.

The main programming procedure is briefly described as follows:

(a) **Reset the system**: Check if the LS0 (limit switch) is touched ($p_{3.2} = 1$). If yes, brake the motor ($p_{3.0} = 1, p_{3.1} = 1$). Otherwise, reverse the motor using 1/4 speed until the LS0 is touched.

(b) **Read the command from the CTM**.

(c) **Check if the motor ID is the authorized number**, that is, $p_1 = \text{abcd0001}$. If yes, continue next step. Otherwise, go back to step (b).

(d) **Select its predefined procedure according to the value of “abcd.”**

(e) **Check if the LS0 or LS1 is touched** ($p_{3.2} = 1$ or $p_{3.3} = 1$). If yes, brake the motor. Otherwise, the motor will be driven continuously until a new command, that is, abcd0001, is received. Then, the procedure will go back to step (d).

Please note that the motor stops whenever the $p_1 = \text{0000****}$, and the motor brakes if the $p_1 = \text{1111****}$ during the process of step (d).

EXPERIMENTAL RESULTS

In order to verify the effectiveness of the proposed approach, both basic and advanced robot actions were fully investigated. Every
Figure 5 Hardware of robot action control module.

Table 1 Main Facilities for the Robot Action Control System

<table>
<thead>
<tr>
<th>Item num.</th>
<th>Instrument name</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td>CPU: E6550 2.33G/1333FSB</td>
</tr>
<tr>
<td>2</td>
<td>Microprocessor</td>
<td>Intel 8051</td>
</tr>
<tr>
<td>3</td>
<td>Microprocessor</td>
<td>Intel 89C2051 TA 7257P: full bridge</td>
</tr>
<tr>
<td>4</td>
<td>Motor driver</td>
<td>DC motor driver</td>
</tr>
<tr>
<td>5</td>
<td>PC 817</td>
<td>Opti-transistor</td>
</tr>
<tr>
<td>6</td>
<td>Limit switch</td>
<td>15A 1/2HP</td>
</tr>
<tr>
<td>7</td>
<td>Buffer</td>
<td>IC7407</td>
</tr>
<tr>
<td>8</td>
<td>DC motor (M1–M24)</td>
<td>12 V</td>
</tr>
</tbody>
</table>

Table 2 Definition of Motor Operation

<table>
<thead>
<tr>
<th>High bits of port 1</th>
<th>Motor operation</th>
<th>Speed (PWM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>Reverse</td>
<td>1/4 speed</td>
</tr>
<tr>
<td>0101</td>
<td>Reverse</td>
<td>2/4 speed</td>
</tr>
<tr>
<td>0110</td>
<td>Reverse</td>
<td>3/4 speed</td>
</tr>
<tr>
<td>0111</td>
<td>Reverse</td>
<td>4/4 (full speed)</td>
</tr>
<tr>
<td>1000</td>
<td>Forward</td>
<td>1/4 speed</td>
</tr>
<tr>
<td>1001</td>
<td>Forward</td>
<td>2/4 speed</td>
</tr>
<tr>
<td>1010</td>
<td>Forward</td>
<td>3/4 speed</td>
</tr>
<tr>
<td>1011</td>
<td>Forward</td>
<td>4/4 (full speed)</td>
</tr>
<tr>
<td>0000</td>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>Brake</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Motor Operation With PWM Speed

<table>
<thead>
<tr>
<th>Input signal</th>
<th>Motor function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brake</td>
</tr>
<tr>
<td>0</td>
<td>PWM signal Reverse</td>
</tr>
<tr>
<td>PWM signal</td>
<td>Reverse with PWM speed</td>
</tr>
<tr>
<td>0</td>
<td>Forward with PWM speed</td>
</tr>
<tr>
<td>0</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Figure 6 Four-speed PWM signals.

Figure 7 Flowchart of database access and transmission.
robot action is defined in advance in the database so that the robot can act as desired. Some of action commands are shown in Figure 11. For instance, the robot can rise up its left arm using the predefined function labeled as "Left arm side rise up" with 1/4 speed motor operation.

Basic Robot Action

The first basic action, that is, Head nodding, was carried out by a sequence data (command) from the database, as shown in Table 6. In the table, the type "A" means the robot action, and the type "D" is the delay time (ms). The waveform of the robot’s head nodding is shown in Figure 12. The first waveform is the PWM signal. The second waveform is the motor (M13) voltage, and the third one shows its current waveform. The robot firstly bends down its head 90° using the reverse motor direction. The action continues 1 s, and the robot’s head then rises up back to the original position with the forward direction. From the outcome, it can be seen that the motor current direction is opposite between above two actions. Additionally, the head rising time is a little longer than the head lowering time due to the gravity weight. It also indicates that the reverse transient current always occurs whenever the motor just stops, no matter what motor rotating direction is.

Similar to the robot’s head nodding control, Table 7 provides the command for the head turning action. Firstly, the head starts to turn right 30° from the middle location, that is, original point, until the right limited switch is touched. Then, the head turns left 60°, and it stops when the left limited switch is touched. Finally, the head turns right 30° back to the original point. Figure 13 shows the action waveform of the head turning. The first waveform is the PWM signal. The second waveform is the motor (M14) voltage, and the third one presents its current waveform.

Advanced Robot Action

The hand waving is illustrated as the first advanced robot action. Its sequence commands are listed in Table 8. The right arm motor (M2), right arm rotating motor (M1), and right hand elbow motor (M4) are used to complete this action at the same time. The main action sequence is as follows. Right arm rises — right hand rotates forward — right hand elbow rotates forward — right hand elbow rotates reversely — right hand elbow rotates forward — right hand elbow rotates reversely — right hand rotates reversely — right arm descends. Following up the above procedure, the arm will return to the original position at the last stage. This action shows that the right arm begins to rise up and then rotates 90°. The elbow then moves to right and left sides twice. As above, the hand waving action is complete. The waveform results are shown in Figure 14. The first waveform is the right arm motor (M14) voltage, and the third one presents its current waveform.

<table>
<thead>
<tr>
<th>Command code (Hex)</th>
<th>Operation</th>
<th>PWM speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>Left arm side rise up</td>
<td>1/4 speed</td>
</tr>
<tr>
<td>51</td>
<td>Left arm side rise down</td>
<td>1/2 speed</td>
</tr>
<tr>
<td>B2</td>
<td>Left arm side rise up</td>
<td>Full speed</td>
</tr>
<tr>
<td>02</td>
<td>Left arm rise brake</td>
<td>Brake</td>
</tr>
<tr>
<td>B3</td>
<td>Left elbow bend down</td>
<td>Full speed</td>
</tr>
<tr>
<td>84</td>
<td>Left elbow bend in</td>
<td>1/4 speed</td>
</tr>
<tr>
<td>04</td>
<td>Left elbow bend brake</td>
<td>Brake</td>
</tr>
<tr>
<td>86</td>
<td>Head nod up</td>
<td>1/4 speed</td>
</tr>
<tr>
<td>76</td>
<td>Head nod down</td>
<td>Full speed</td>
</tr>
<tr>
<td>B7</td>
<td>Head wag up</td>
<td>Full speed</td>
</tr>
<tr>
<td>A8</td>
<td>Right arm side rise up</td>
<td>3/4 speed</td>
</tr>
<tr>
<td>68</td>
<td>Right arm side rise down</td>
<td>3/4 speed</td>
</tr>
<tr>
<td>09</td>
<td>Right arm brake</td>
<td>Brake</td>
</tr>
<tr>
<td>0A</td>
<td>Right elbow bend brake</td>
<td>Brake</td>
</tr>
<tr>
<td>92</td>
<td>Right wrist bend in</td>
<td>1/2 speed</td>
</tr>
<tr>
<td>43</td>
<td>Right thigh back</td>
<td>1/4 speed</td>
</tr>
<tr>
<td>87</td>
<td>Right ankle up</td>
<td>1/4 speed</td>
</tr>
<tr>
<td>5A</td>
<td>Left elbow turn counter-clockwise</td>
<td>1/2 speed</td>
</tr>
<tr>
<td>51</td>
<td>Right foot drive backward</td>
<td>1/2 speed</td>
</tr>
<tr>
<td>82</td>
<td>Left foot drive forward</td>
<td>1/4 speed</td>
</tr>
</tbody>
</table>
In the second case, the sequence commands for the hand pointing to robot itself are listed in Table 9. This action requires four motors, that is, right arm rotating motor (M1), right arm motor (M2), right hand elbow motor (M4), and right wrist motor (M6), to be operated simultaneously. Its main action sequence is as follows: right arm rotates forward → right arm rises → right hand elbow rotates forward → right wrist rotates forward → right wrist rotates reversely → right hand elbow rotates reversely → right hand rotates reversely. Accordingly, the action for the hand pointing to robot itself is complete. The waveform results are shown in Figure 15. The first waveform is the right arm rotating motor (M1) voltage. The second one is the right hand elbow motor (M4) voltage, and the third one shows the total supply current required to operate this action. Obviously, we see that different joint operations can be performed at the same time. This situation is particularly clear during the last period of time, where more current is required. Note that for the simplification the waveform of right arm motor (M2) voltage does not appear in Figure 15.

The third case is to demonstrate the robot’s two-foot walking using the right-foot motor (M24) and left-foot motor (M20). Its sequence commands from the database are listed in Table 10, and its performance result is shown in Figure 16. The first waveform indicates the right-foot motor voltage. The second one is the left-foot motor voltage, and the third one shows the total supply current required to operate this action. Firstly, the robot’s two feet move forward simultaneously in order to drive the robot walking along a straight line. In the next stage, the robot’s right foot turns left 45°, and the left foot remains immobile. The robot’s left foot then turns right 90° while the right foot remains immobile. This stage indeed drives the robot to move back in the opposite direction. Soon after the robot turns back, it starts to move backward. The results confirm that the robot is capable of implementing walk and turning performance well.

CONCLUSIONS

The proposed system has presented a simple communication interface and local-loop control system for real-time robot action successfully. Each serial communication port can continuously send various action commands to the CTM that is connected to 12 independent APMs. All predefined commands stored in the database can be thus called out to work with the local-loop control system for achieving the desired robot actions. Accordingly, up to tens of robot actions can be carried out independently at a time.
Figure 10 Flowchart of main control program.
Figure 11 Command definition in the database.

Figure 12 Head nodding waveforms: (1) PWM signal, (2) motor voltage, and (3) motor current.

Figure 13 Head turning (1) PWM signal, (2) motor voltage, and (3) motor current.

Table 6 Head Nodding Command in the Database
Table 7 Head Turning Command in the Database

<table>
<thead>
<tr>
<th>ActionNo</th>
<th>SerialNo</th>
<th>Type</th>
<th>Command</th>
<th>Port</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>A</td>
<td>135</td>
<td>1</td>
<td>Head wag up</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>D</td>
<td>300</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>A</td>
<td>7</td>
<td>1</td>
<td>Head wag brake</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>A</td>
<td>71</td>
<td>1</td>
<td>Head wag down</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>D</td>
<td>500</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>A</td>
<td>7</td>
<td>1</td>
<td>Head wag brake</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>A</td>
<td>135</td>
<td>1</td>
<td>Head wag up</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>D</td>
<td>300</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>A</td>
<td>7</td>
<td>1</td>
<td>Head wag brake</td>
</tr>
</tbody>
</table>

Table 8 Hand Waving Command in the Database

<table>
<thead>
<tr>
<th>ActionNo</th>
<th>SerialNo</th>
<th>Type</th>
<th>Command</th>
<th>Port</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3001</td>
<td>1</td>
<td>A</td>
<td>159</td>
<td>1</td>
<td>Right arm rise up</td>
</tr>
<tr>
<td>3001</td>
<td>2</td>
<td>D</td>
<td>3000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>3</td>
<td>A</td>
<td>9</td>
<td>1</td>
<td>Right arm brake</td>
</tr>
<tr>
<td>3001</td>
<td>4</td>
<td>A</td>
<td>168</td>
<td>1</td>
<td>Right arm side rise up</td>
</tr>
<tr>
<td>3001</td>
<td>5</td>
<td>D</td>
<td>2000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>6</td>
<td>A</td>
<td>8</td>
<td>1</td>
<td>Right arm side rise brake</td>
</tr>
<tr>
<td>3001</td>
<td>7</td>
<td>A</td>
<td>170</td>
<td>1</td>
<td>Right elbow head down</td>
</tr>
<tr>
<td>3001</td>
<td>8</td>
<td>D</td>
<td>3000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>9</td>
<td>A</td>
<td>106</td>
<td>1</td>
<td>Right elbow head up</td>
</tr>
<tr>
<td>3001</td>
<td>10</td>
<td>D</td>
<td>800</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>11</td>
<td>A</td>
<td>10</td>
<td>1</td>
<td>Right elbow head brake</td>
</tr>
<tr>
<td>3001</td>
<td>12</td>
<td>A</td>
<td>170</td>
<td>1</td>
<td>Right elbow head down</td>
</tr>
<tr>
<td>3001</td>
<td>13</td>
<td>D</td>
<td>800</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>14</td>
<td>A</td>
<td>10</td>
<td>1</td>
<td>Right elbow head brake</td>
</tr>
<tr>
<td>3001</td>
<td>15</td>
<td>A</td>
<td>72</td>
<td>1</td>
<td>Right arm side rise down</td>
</tr>
<tr>
<td>3001</td>
<td>16</td>
<td>D</td>
<td>2000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>17</td>
<td>A</td>
<td>8</td>
<td>1</td>
<td>Right arm side rise brake</td>
</tr>
<tr>
<td>3001</td>
<td>18</td>
<td>A</td>
<td>72</td>
<td>1</td>
<td>Right arm rise down</td>
</tr>
<tr>
<td>3001</td>
<td>19</td>
<td>D</td>
<td>1000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3001</td>
<td>20</td>
<td>A</td>
<td>8</td>
<td>1</td>
<td>Right arm brake</td>
</tr>
</tbody>
</table>

Figure 14 Hand waving waveforms: (1) right arm motor voltage, (2) right arm rotating motor voltage, (3) right hand elbow motor voltage, and (4) total DC supply current.

Figure 15 Hand pointing to robot itself: (1) right arm rotating motor voltage, (2) right hand elbow motor, (3) right wrist motor voltage, and (4) total DC supply current.
reality of the multiple speed options has made the proposed system be operated more smoothly and robustly. Particularly, this paper presented a good lecture material for students to learn their school-based knowledge to be applied to a robot interface and control system design. The paper also demonstrated its potential capability for extension to a variety of development and applications in the robot discipline. For further applications, the proposed scheme can be easily extended to perform an instant multi-motor control in related robot control systems or automated industry.

ACKNOWLEDGMENTS

This work was supported by the National Science Council of the Republic of China, Taiwan, under Grant No. NSC 98-2218-E-270-003.
REFERENCES

BIographies

Hsiung-Cheng Lin was born in Chang Hua in Taiwan on September 3, 1962. He graduated from National Taiwan Normal University for his bachelor degree in 1986, Taiwan. He received Master and PhD degree from Swinburne University of Technology, Australia, in 1995 and 2002, respectively. He was also nominated and included in the First Edition of Who’s Who in Asia 2007 and 10th Who’s Who in Science and Engineering 2007. He is currently a professor in the Department of Electronic Engineering at National Chin-Yi University of Technology. His special fields of interest include power electronics, neural network, network supervisory system, and adaptive filter design.

Chao-Hung Chen was born in Chang Hua in Taiwan on August 25, 1963. He graduated from National Taiwan Normal University for his bachelor degree in 1987, Taiwan. He received Master degree from National Taiwan University, Taiwan, in 1994. He is currently a lecturer in the Department of Electrical Engineering at Chienkuo Technology University (CTU), Taiwan. His special fields of interest include Power Electronics, Electric Motor Drives, and Robot Motion Control.

Guo-Shing Huang was born in Taiwan in 1957. He received the BS and the MS degree from the Feng Chia University in 1980 and 1983, respectively. He pursued his PhD from the Department of Electrical Engineering, National Cheng Kung University in 1998. He is currently a professor in the Department of Electronic Engineering of National Chin-Yi University of Technology (NCUT), Taiwan. He was elected in Who’s Who in the World 2006, the 23rd edition in 2006, and Who’s Who in Science and Engineering 2006—2007, the 9th edition in 2006. His research interests include control applications, integrated GPS/INS electronic navigation, fuzzy/robust control, intelligent Robotic location navigation and control, and power electronic technology.

Ying-Chu Liu was born in Tai-Chung in Taiwan on September 12, 1984. Liu obtained his bachelor degree from the Department of Automation Engineering in Chienkuo Technology University (CTU), Taiwan, in 2007. He is now a research student pursuing the master degree in CTU. His special fields of interest include microprocessor-based applications in robot action control, motor control, etc.

Wei-Chung Hsu was born in Chang Hua in Taiwan on April 9, 1985. Hsu obtained his bachelor degree from the Department of Electronic Engineering in Chienkuo Technology University (CTU), Taiwan, in 2007. He is now a research student pursuing the master degree in CTU. His special fields of interest include Digital Electronic, Object-Oriented Programming, etc.

Q1: Please check the suitability of the short title on the odd-numbered pages. It has been formatted to fit the journal’s 45-character (including spaces) limit.
Q2: Please check the affiliations and also the corresponding author.
READ PROOFS CAREFULLY
- This will be your only chance to review these proofs.
- Please note that the volume and page numbers shown on the proofs are for position only.

ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
- Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

CHECK FIGURES AND TABLES CAREFULLY (Color figures will be sent under separate cover.)
- Check size, numbering, and orientation of figures.
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
- Review figure legends to ensure that they are complete.
- Check all tables. Review layout, title, and footnotes.

COMPLETE REPRINT ORDER FORM
- Fill out the attached reprint order form. It is important to return the form even if you are not ordering reprints.
 You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

ADDITIONAL COPIES
- If you wish to purchase additional copies of the journal in which your article appears, please contact Neil Adams at (201) 748-8839, fax (201) 748-6021, or E-mail at nadams@wiley.com

RETURN
- PROOFS
- REPRINT ORDER FORM
- CTA (If you have not already signed one)

RETURN WITHIN 48 HOURS OF RECEIPT VIA E-MAIL OR FAX TO 201-748-6182

QUESTIONS?
Laura Espinet, Associate Production Manager
Phone: 201-748-8884
E-mail:lespinet@wiley.com
Refer to journal acronym and article production number (i.e., CAE 00-001 for Computer Applications in Engineering Education ms 00-001).
COPYRIGHT TRANSFER AGREEMENT

Date: ___________________________ Contributor name: ___________________________

Contributor address: __

Manuscript number (Editorial office only): __________________________

Re: Manuscript entitled ___

for publication in __

published by __ ("Wiley-Blackwell").

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to disseminate your Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal's instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

A. COPYRIGHT

1. The Contributor assigns to Wiley-Blackwell, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to Wiley-Blackwell as Publisher, and/or the Society if applicable, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue, Copyright © [year], copyright owner as specified in the Journal). Links to the final article on Wiley-Blackwell's website are encouraged where appropriate.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution.

C. PERMITTED USES BY CONTRIBUTOR

1. Submitted Version. Wiley-Blackwell licenses back to the Contributor the following rights with respect to the final published version of the Contribution:

 a. After publication of the final article, the right to self-archive on the Contributor's personal website or in the Contributor's institution/employer's institutional repository or archive. This right extends to both intranets and the Internet. The Contributor may not update the submission version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].

 b. The right to transmit, print and share copies with colleagues.

2. Accepted Version. Re-use of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Wiley-Blackwell has agreements with certain funding agencies governing reuse of this version. The details of those relationships, and other offerings allowing open web use, are set forth at the following website: http://www.wiley.com/go/funderstatement. NIH grantees should check the box at the bottom of this document.

3. Final Published Version. Wiley-Blackwell hereby licenses back to the Contributor the following rights with respect to the final published version of the Contribution:

 a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version in any format to colleagues upon their specific request provided no fee is charged, and further-provided that there is no systematic distribution of the Contribution, e.g. posting on a listserv, website or automated delivery.

 b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.

 c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor's institution/place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g. commercial seminars). Electronic posting of the final published version in connection with teaching/training at the Contributor's institution/place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.

 d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected Text (up to 250 words).

 a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, Wiley-Blackwell encourages but does not require linking back to the final published versions.

 b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:

 (i) Full and accurate credit must be given to the Contribution.

 (ii) Modifications to the figures, tables and data must be noted. Otherwise, no changes may be made.

 (iii) The reuse may not be made for direct commercial purposes, or for financial consideration to the Contributor.

 (iv) Nothing herein shall permit dual publication in violation of journal ethical practices.

CTA-A
D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor’s employment (as a “work-made-for-hire” in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature) in the space provided below. In such case, the company/employer hereby assigns to Wiley-Blackwell, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company’s internal network. Copies so used may not be resold or distributed externally. However, the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell’s written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell’s reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of any applicable fee(s). Also, upon payment of Wiley-Blackwell’s reprint fee, the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell’s written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell’s reprint fee, the institution may distribute print copies of the published Contribution externally.

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR’S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor’s original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell’s permissions form or in the Journal’s Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:

- Contributor-owned work
- Company/Institution-owned work
- U.S. Government work
- U.K. Government work (Crown Copyright)
- Other Government work
- NIH Grantees

ATTACH ADDITIONAL SIGNATURE PAGES AS NECESSARY

NOTE TO U.S. GOVERNMENT EMPLOYEES

A contribution prepared by a U.S. federal government employee as part of the employee’s official duties, or which is an official U.S. Government publication, is called a “U.S. Government work,” and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor’s signature line) and return this Agreement. If the Contribution was prepared as part of the employee’s duties or is not an official U.S. Government publication, it is not a U.S. Government work.

NOTE TO U.K. GOVERNMENT EMPLOYEES

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/publication-of-articles-written-by-ministers-and-civil-servants.htm

NOTE TO NON-U.S., NON-U.K. GOVERNMENT EMPLOYEES

If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.

NOTE TO NIH GRANTEES

Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see www.wiley.com/go/nihmandate.
To: Laura Espinet

Company:

Phone: 201-748-8884
Fax: 201-748-6182

From:

Date:

Pages including this cover page:

Message:

Re:
Please complete this form even if you are not ordering reprints. This form MUST be returned with your corrected proofs and original manuscript. Your reprints will be shipped approximately 4 weeks after publication. Reprints ordered after printing are substantially more expensive.

JOURNAL: COMPUTER APPLICATIONS IN ENGINEERING EDUCATION VOLUME_____ ISSUE_____

TITLE OF MANUSCRIPT__

MS. NO__________ NO. OF PAGES______ AUTHOR(S)__

REPRINTS 8 1/4 X 11

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$336</td>
<td>$501</td>
<td>$694</td>
<td>$890</td>
<td>$1,052</td>
</tr>
<tr>
<td>5-8</td>
<td>$469</td>
<td>$703</td>
<td>$987</td>
<td>$1,251</td>
<td>$1,477</td>
</tr>
<tr>
<td>9-12</td>
<td>$594</td>
<td>$923</td>
<td>$1,234</td>
<td>$1,565</td>
<td>$1,850</td>
</tr>
<tr>
<td>13-16</td>
<td>$714</td>
<td>$1,156</td>
<td>$1,527</td>
<td>$1,901</td>
<td>$2,273</td>
</tr>
<tr>
<td>17-20</td>
<td>$794</td>
<td>$1,340</td>
<td>$1,775</td>
<td>$2,212</td>
<td>$2,648</td>
</tr>
<tr>
<td>21-24</td>
<td>$911</td>
<td>$1,529</td>
<td>$2,031</td>
<td>$2,536</td>
<td>$3,037</td>
</tr>
<tr>
<td>25-28</td>
<td>$1,004</td>
<td>$1,707</td>
<td>$2,267</td>
<td>$2,828</td>
<td>$3,388</td>
</tr>
<tr>
<td>29-32</td>
<td>$1,108</td>
<td>$1,894</td>
<td>$2,515</td>
<td>$3,135</td>
<td>$3,755</td>
</tr>
<tr>
<td>33-36</td>
<td>$1,219</td>
<td>$2,092</td>
<td>$2,773</td>
<td>$3,456</td>
<td>$4,143</td>
</tr>
<tr>
<td>37-40</td>
<td>$1,329</td>
<td>$2,290</td>
<td>$3,033</td>
<td>$3,776</td>
<td>$4,528</td>
</tr>
</tbody>
</table>

** REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (201)748-8659 FOR A PRICE QUOTE.

COVERS

| 100 Covers | $890 | 200 Covers | $145 | 300 Covers | $200 |
| 400 Covers | $255 | 500 Covers | $325 | Additional 100s | $65 |

Please check one:
q Check enclosed
q Bill me
q Credit Card
Credit Card No._____________________________ Signature_____________________________ Exp. Date___________

**International orders must be paid in U.S. currency and drawn on a U.S. bank

Bill To:
Name__________________________
Address/Institution__________________________

Purchase Order No.__________________________ Phone__________________________ Fax__________________________
E-mail:__________________________
Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 4.0, 5.0 or 6.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat 4.0, 5.0 or 6.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat 4.0, 5.0 or 6.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0) and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.

3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. At this point, you can type the corrections directly into the NOTES text box window. **DO NOT correct the text by typing directly on the PDF page.**

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0).

7. **When closing your article PDF be sure NOT to save changes to original file.**

8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.